首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20564篇
  免费   4594篇
  国内免费   1959篇
化学   11192篇
晶体学   271篇
力学   2094篇
综合类   225篇
数学   1068篇
物理学   12267篇
  2024年   28篇
  2023年   173篇
  2022年   508篇
  2021年   593篇
  2020年   753篇
  2019年   740篇
  2018年   731篇
  2017年   837篇
  2016年   1004篇
  2015年   926篇
  2014年   1313篇
  2013年   1912篇
  2012年   1437篇
  2011年   1482篇
  2010年   1156篇
  2009年   1241篇
  2008年   1230篇
  2007年   1304篇
  2006年   1179篇
  2005年   1022篇
  2004年   894篇
  2003年   785篇
  2002年   806篇
  2001年   711篇
  2000年   643篇
  1999年   514篇
  1998年   467篇
  1997年   411篇
  1996年   350篇
  1995年   327篇
  1994年   284篇
  1993年   232篇
  1992年   196篇
  1991年   160篇
  1990年   113篇
  1989年   99篇
  1988年   106篇
  1987年   72篇
  1986年   64篇
  1985年   56篇
  1984年   55篇
  1983年   24篇
  1982年   40篇
  1981年   37篇
  1980年   22篇
  1979年   19篇
  1978年   12篇
  1977年   10篇
  1976年   8篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
1.
高性能功能材料在诸多领域具有广泛的应用前景,是人们一直关注的研究热点。高压可以有效地改变物质的原子间距和成键方式,是获得新型功能材料的重要途径。在碳材料的高压研究中,许多有趣的功能碳材料,如光学透明碳、高强度弹性碳和超硬非晶碳等,已经通过不同的碳前驱体合成。本文简要介绍了作者近年来在低维碳基纳米复合材料高压研究中取得的进展,基于设计的不同低维碳前驱体,高压下截获了具有超硬特性、新型压致共价聚合及发光增强的碳材料。  相似文献   
2.
The dielectric properties of coordination polymers has been a topic of recent interest, but the role of different functional groups on the dielectric properties of these polymers has not yet been fully addressed. Herein, the effects of electron-donating (R=NH2) and electron-withdrawing (R=NO2) groups on the dielectric behavior of such materials were investigated for two thermally stable and guest-free Zn-based coordination polymers, [Zn(L1)(L2)]n ( 1 ) and [Zn(L1)(L3)]n ( 2 ) [L1=2-(2-pyridyl) benzimidazole (Pbim), L2=5-aminoisophthalate (Aip), and L3=5-nitroisophthalate (Nip)]. The results of dielectric studies of 1 revealed that it possesses a high dielectric constant (κ=65.5 at 1 kHz), while compound 2 displayed an even higher dielectric constant (κ=110.3 at 1 kHz). The electron donating and withdrawing effects of the NH2 and NO2 substituents induce changes in the polarity of the polymers, which is due to the inductive effect from the aryl ring for both NO2 and NH2. Theoretical results from density functional theory (DFT) calculations, which also support the experimental findings, show that both compounds have a distinct electronic behavior with diverse wide bandgaps. The significance of the current work is to provide information about the structure-dielectric property relationships. So, this study promises to pave the way for further research on the effects of different functional groups on coordination polymers on their dielectric properties.  相似文献   
3.
Weijin Li 《中国物理 B》2022,31(8):80503-080503
Aiming at training the feed-forward threshold neural network consisting of nondifferentiable activation functions, the approach of noise injection forms a stochastic resonance based threshold network that can be optimized by various gradient-based optimizers. The introduction of injected noise extends the noise level into the parameter space of the designed threshold network, but leads to a highly non-convex optimization landscape of the loss function. Thus, the hyperparameter on-line learning procedure with respective to network weights and noise levels becomes of challenge. It is shown that the Adam optimizer, as an adaptive variant of stochastic gradient descent, manifests its superior learning ability in training the stochastic resonance based threshold network effectively. Experimental results demonstrate the significant improvement of performance of the designed threshold network trained by the Adam optimizer for function approximation and image classification.  相似文献   
4.
The recognition of boron compounds is well developed as boronic acids but untapped as organotrifluoroborate anions (R−BF3). We are exploring the development of these and other designer anions as anion-recognition motifs by considering them as substituted versions of the parent inorganic ion. To this end, we demonstrate strong and reliable binding of organic trifluoroborates, R−BF3, by cyanostar macrocycles that are size-complementary to the inorganic BF4 progenitors. We find that recognition is modulated by the substituent's sterics and that the affinities are retained using the common K+ salts of R−BF3 anions.  相似文献   
5.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
6.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
7.
Knowledge of the vibrational properties of nanoparticles is of fundamental interest since it is a signature of their morphology, and it can be utilized to characterize their physical properties. In addition, the vibration characteristics of the nanoparticles coupled with surrounding media and subjected to magnetic field are of recent interest. This paper develops an analytical approach to study the radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to magnetic field. Based on Maxwell's equations, the nonlocal differential equation of radial motion is derived in terms of radial displacement and Lorentz's force. Bessel functions are used to obtain a frequency equation. The model is justified by a good agreement between the results given by the present model and available experimental and atomic simulation data. Furthermore, the model is used to elucidate the effect of nanoparticle size, the magnetic field and the stiffness of the elastic medium on the radial breathing-mode frequencies of several nanoparticles. Our results reveal that the effects of the magnetic field and the elastic medium are significant for nanoparticle with small size.  相似文献   
8.
By employing the perturbation formulae of the spin Hamiltonian parameters (SHPs) (g factors gxx, gyy, gzz, hyperfine structure constants Axx, Ayy, Azz and superhyperfine parameters Axx׳, Ayy׳, Azz׳) for a 3d1 ion in orthorhombically elongated octahedra and tetrahedra, the defect structures and the experimental EPR spectra are theoretically and systematically investigated for the two orthorhombic Ti3+ centers C1 and C2 in ZnWO4. Center C1 is ascribed to the impurity Ti3+ at host W6+ site associated with two nearest neighbor oxygen vacancies due to charge compensation. The resultant tetrahedral [TiO4]5– cluster is determined to undergo the local orthorhombic elongation distortion, characterized by the axial distortion angle Δθ (=θθ0≈–6.84°) of the local impurity-ligand bond angle θ related to θ0 (≈54.74°) and the perpendicular distortion angle Δε (=εε0≈2.5°) related to ε0 (≈45°) of an ideal tetrahedron because of the Jahn–Teller effect. Center C2 is attributed to Ti3+ on Zn2+ site, and this octahedral [TiO6]9– cluster may experience the local axial elongation ΔZ (≈0.001 Ǻ) and the planar bond angle variation Δφ (≈9.1°) due to the Jahn–Teller effect, resulting in a more regular oxygen octahedron. All the calculated SHPs (i.e., g factors for both centers, the hyperfine structure constants for center C2 and superhyperfine parameters of next nearest neighbor ligand W for center C1) show good agreement with the observed values. However, the theoretical results based on the previous assignment of center C1 as Ti3+ on W6+ site with only one nearest planar oxygen vacancy (i.e., five-fold coordinated octahedral [TiO5]7– cluster) show much worse agreement with the experimental data. The defect structures and the SHPs (especially the g anisotropies) are discussed for both centers. The present studies on the superhyperfine parameters of ligand W6+ for center C1 would be helpful to further investigations on the superhyperfine interactions of cation ligands which were rather scarcely treated before.  相似文献   
9.
Xiaofan Zhang 《中国物理 B》2022,31(11):114209-114209
We theoretically investigate the yield enhancement of elliptical high harmonics in the interaction of molecules with bicircular laser pulses by solving the time-dependent Schrödinger equation. It is shown that by adjusting the relative intensity ratio of the two bicircular field components in specific ranges the yield of the molecular high harmonics for the plateau and cutoff regions can be respectively enhanced. To analyze this enhancement phenomenon, we calculate the weights of the electron classical trajectories. Additionally, we also study the ellipticity distribution of harmonics for different intensity ratios. We find that these enhanced harmonics are elliptically polarized, which we mainly attribute to the recombination dipole moment of the major weighted trajectories. These enhanced elliptical extreme ultraviolet and soft x-ray radiations may serve as essential tools for exploring the ultrafast dynamics in magnetic materials and chiral media.  相似文献   
10.
Tianqi Li 《中国物理 B》2022,31(12):124208-124208
An aluminum (Al) based nearly guided-wave surface plasmon resonance (NGWSPR) sensor is investigated in the far-ultraviolet (FUV) region. By simultaneously optimizing the thickness of Al and dielectric films, the sensitivity of the optimized Al-based FUV-NGWSPR sensor increases from 183°/RIU to 309°/RIU, and its figure of merit rises from 26.47 RIU-1 to 32.59 RIU-1 when the refractive index of dielectric increases from 2 to 5. Compared with a traditional FUV-SPR sensor without dielectric, the optimized FUV-NGWSPR sensor can realize simultaneous improvement of sensitivity and figure of merit. In addition, the FUV-NGWSPR sensor with realistic materials (diamond, Ta2O5, and GaN) is also investigated, and 137.84%, 52.70%, and 41.89% sensitivity improvements are achieved respectively. This work proposes a method for performance improvement of FUV-SPR sensors by exciting nearly guided-wave, and could be helpful for the high-performance SPR sensor in the short-wavelength region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号